時間:2019-06-11 00:00:00 來源:信盈達 作者:信盈達
如果你仔細觀察,就不難發現,懂爬蟲、學習爬蟲的人越來越多,一方面,互聯網可以獲取的數據越來越多,另一方面,像 Python這樣的編程語言提供越來越多的優秀工具,讓爬蟲變得簡單、容易上手。
對于小白來說,爬蟲可能是一件非常復雜、技術門檻很高的事情。比如有的人認為學爬蟲必須精通 Python,然后哼哧哼哧系統學習 Python 的每個知識點,很久之后發現仍然爬不了數據;有的人則認為先要掌握網頁的知識,遂開始 HTMLCSS,結果入了前端的坑,瘁……
但掌握正確的方法,在短時間內做到能夠爬取主流網站的數據,其實非常容易實現。但建議你從一開始就要有一個具體的目標,你要爬取哪個網站的哪些數據,達到什么量級。
那些所有你認為必須的前置知識,都是可以在完成目標的過程中學到的。這里給你一條平滑的、零基礎快速入門的學習路徑。
5.分布式爬蟲,實現大規模并發采集
大部分爬蟲都是按“發送請求——獲得頁面——解析頁面——抽取并儲存內容”這樣的流程來進行,這其實也是模擬了我們使用瀏覽器獲取網頁信息的過程。
Python中爬蟲相關的包很多:urllib、requests、bs4、scrapy、pyspider 等,建議從requests+Xpath 開始,requests 負責連接網站,返回網頁,Xpath 用于解析網頁,便于抽取數據。
如果你用過 BeautifulSoup,會發現 Xpath 要省事不少,一層一層檢查元素代碼的工作,全都省略了。這樣下來基本套路都差不多,一般的靜態網站根本不在話下,豆瓣、糗事百科、騰訊新聞等基本上都可以上手了。
當然,爬蟲過程中也會經歷一些絕望,比如被封IP、比如各種奇怪的驗證碼、字體加密、userAgent訪問限制、各種動態加載等等。
遇到這些反爬蟲的手段,當然還需要一些高級的技巧來應對,常規的比如訪問頻率控制、使用代理IP池、字體反加密、抓包、驗證碼的OCR處理等等。
三、學習 scrapy,搭建工程化的爬蟲
掌握前面的技術一般量級的數據和代碼基本沒有問題了,但是在遇到非常復雜的情況,可能仍然會力不從心,這個時候,強大的 scrapy 框架就非常有用了。
scrapy 是一個功能非常強大的爬蟲框架,它不僅能便捷地構建request,還有強大的 selector 能夠方便地解析 response,然而它最讓人驚喜的還是它超高的性能,讓你可以將爬蟲工程化、模塊化。
學會 scrapy,你可以自己去搭建一些爬蟲框架,你就基本具備爬蟲工程師的思維了。
四、學習數據庫基礎,應對大規模數據存儲
MongoDB 可以方便你去存儲一些非結構化的數據,比如各種評論的文本,圖片的鏈接等等。你也可以利用PyMongo,更方便地在Python中操作MongoDB。
因為這里要用到的數據庫知識其實非常簡單,主要是數據如何入庫、如何進行提取,在需要的時候再學習就行。
五、分布式爬蟲,實現大規模并發采集
爬取基本數據已經不是問題了,你的瓶頸會集中到爬取海量數據的效率。這個時候,相信你會很自然地接觸到一個很厲害的名字:分布式爬蟲。
分布式這個東西,聽起來很恐怖,但其實就是利用多線程的原理讓多個爬蟲同時工作,需要你掌握 Scrapy + MongoDB + Redis 這三種工具。
Scrapy 前面我們說過了,用于做基本的頁面爬取,MongoDB 用于存儲爬取的數據,Redis 則用來存儲要爬取的網頁隊列,也就是任務隊列。
所以有些東西看起來很嚇人,但其實分解開來,也不過如此。當你能夠寫分布式的爬蟲的時候,那么你可以去嘗試打造一些基本的爬蟲架構了,實現更加自動化的數據獲取。
想要學習python爬蟲實戰,可以參考信盈達的Python爬蟲培訓課程。暑假期間,信盈達開啟免費的Python暑期實踐直播課,快來報名吧!
免費領取試聽卡
申請已經提交
老師會馬上給您安排試聽課程!
申請出錯了
您可以加老師QQ:914865590報名咨詢!